INVERSE MOTION and RELATIVE MOTION

Change the point of observation


## Two positions of a moving plane



The motion of $A B$ relative to $C D$ for 2 positions


To invert the motion, fix $\mathrm{CDA}_{2} \mathrm{~B}_{2}$ to each other.

1. Translate so that $A_{2}^{\prime}$ coencides with $A_{1}$. ( $C D$ will move to $\left.C^{\prime} D^{\prime}\right)$.
2. Rotate so that $\mathrm{B}_{2}$ coencides with $\mathrm{B}_{1}$ (CD is at $\mathrm{C}_{2} \mathrm{D}^{\prime}{ }_{2}$.

Motion from $C D$ to $C^{\prime}{ }_{2} D_{2}^{\prime}$ is the inverse motion of the plane $C D$ relative to $A B$


For the inverse motion:

1. The pole $P_{12}$ is the same as the original motion
2. The angular rotation is equal to the original motion but in reverse direction: $\phi^{\prime}{ }_{12}=-\phi_{12}$


In Kinematic inversion Circle and Center points change their role!!!

Using kinematic inversion you can first select center point $A_{0}$ and then determine circle point $A_{1}$


## Ge

You are to have solar panels for a space ship. During takeoff, the panels must be tangent and when the spaceship is in orbit, the panels must be perpendicular to the space ship. The fixed pivots must be on the surface of the capsule as shown. Design a four-bar mechanism to move the solar panels in between two positions.


## Relative Motion

Relative Motion between two moving planes.
You are to observe the motion of a moving plane from another moving frame.

At time $t=t_{1}$, planes are at $E_{1}$ and $E_{1}^{\prime}$. At $t=t_{2}$ planes moved to $E_{2}, E_{2}^{\prime}$. How would you see the motion if you were sitting on plane E?

If you were sitting on the fixed frame the motion of two planes most simply occurs by rotation about poles $\mathrm{P}_{12}$ and $\mathrm{P}^{\prime}{ }_{12}$ by angles $\phi_{12}$ and $\psi_{12}$.

To see the motion of $E^{\prime}$ relative to $E$, "SUBTRACT" the motion of $E$ from that of $E$ '.

To "subtract" the motion, Fix $\mathrm{E}_{2}$ and $\mathrm{E}_{2}$ to each other and rotate both planes about $\mathrm{P}_{12}$ by an angle $-\phi_{12}$. This moves $E^{\prime}$ to $E_{1}$ and $E_{2}{ }_{2}$ to $E^{\prime \prime}{ }_{2}$. The motion from $E^{\prime}$ to $E^{\prime \prime}{ }_{2}$ is what you will see if you were sitting on plane E .


There are two positions of $\mathrm{E}^{\prime}$ relative to E : $\mathrm{E}^{\prime} 1$ and $\mathrm{E}^{\prime \prime} 2$.
Determine the pole for this relative motion and let us call this pole $\mathrm{R}^{1}{ }_{12}$, since it is a "relative pole"

$$
\gamma_{12}=\psi_{12}-\phi_{12}
$$



Relative Motion: When E is at $\mathrm{E}_{1}$, the motion of the plane $E^{\prime}$ from $E_{1}^{\prime}$ to $E^{\prime \prime}{ }_{2}$ by a rotation about $\mathrm{R}^{1}{ }_{12}$ by an angle $\psi_{12}-\phi_{12}$ is the relative motion of the plane $E^{\prime}$ with respect to plane E when E is at $\mathrm{E}_{1}$

## The motion of the planes $E$ and $E^{\prime}$ from $E_{1}$

 to $E_{2}$ and from $E_{1}$ to $E^{\prime}{ }_{2}$ can be realized by:Rotate $E$ about $P_{12}$ by an angle $\phi_{12}$ and rotate $E_{1}^{\prime}$ about $\mathrm{P}^{\prime}{ }_{12}$ by an angle $\psi_{12}$.
a) Rotate $\mathrm{E}_{1}$ about $\mathrm{R}_{12}$ by $\gamma_{12}=\psi_{12}-\phi_{12}$. (This motion moves E' from $E_{1}{ }_{1}$ to $E^{\prime \prime}{ }_{2}$ )
b) Fix $E$ and $E^{\prime}$ and rotate about $P_{12}$ by an angle $\phi_{12}$.

The line $P_{12} R^{1}{ }_{12}$ will also rotate by an angle $\phi_{12}$ about $\mathrm{P}_{12}$ and will be at $\mathrm{R}_{12}^{2}$ in the second position of the planes.

You can also move $\mathrm{R}^{1}{ }_{12}$ to $\mathrm{R}^{2}{ }_{12}$ by rotating $\mathrm{P}^{\prime}{ }_{12} \mathrm{R}^{1}{ }_{12}$ about $\mathrm{P}^{\prime}{ }_{12}$ by $\psi_{12}$ !!

$R_{12}$ is not the same for the two positions!!


> To determine the relative pole :


1. Determine the rotation poles of the planes $E$ and $E^{\prime}$ and the angles of rotation between the two positions.
2. Draw a line making an angle $-\phi_{12} / 2$ from $P_{12}$ with respect to the line $\mathrm{P}_{12} \mathrm{X}$. Draw another line from $\mathrm{P}_{12}^{\prime}$ that makes an angle $-\psi_{12} / 2$ with respect to $\mathrm{P}_{12} \mathrm{X}$.
3. The intersection of the two lines drawn will locate the location of the relative pole in position $1, \mathrm{R}^{1}{ }_{12}$, of the moving planes.

## The location of the relative pole in second position: $\mathrm{R}^{2}{ }_{12}$

Relative pole is a common point of the two planes for the two positions..

Hence:

1. Rotate the line $P_{12} R^{1}{ }_{12}$ about $P_{12}$ by an angle $\phi_{12}$.
2. Rotate the line $\mathrm{P}_{12} \mathrm{R}^{1}{ }_{12}$ about $\mathrm{P}^{\prime}{ }_{12}$ by an angle $\psi_{12}$
3. Take the image of $\mathrm{R}^{12}$ about the line $\mathrm{P}_{12} \mathrm{P}^{\prime}{ }_{12}$ ( Draw a line from $\mathrm{R}^{1}{ }_{12}$ perpendicular to $\mathrm{P}_{12} \mathrm{P}^{\prime}{ }_{12}$ and select $\mathrm{R}_{12}^{1} \mathrm{n}=\mathrm{R}^{2}{ }_{12} \mathrm{n}$.)

All the three methods will result in $\mathrm{R}_{12}{ }^{2}$.


## Correlation of Crank Angles



Given: the correlated rotation of two cranks: as one crank rotates by an angle $\phi_{12}$ the other crank has to rotate by an angle $\psi_{12}$
Find: A Four-bar mechanism to perform this task.

## Method 1

1. Locate $\mathrm{R}_{12}{ }^{(1)}$
2. Draw an arbitrary line $L_{1}$ from $R_{12}{ }^{(1)}$
3. Draw another line $L_{2}$ from $\mathrm{R}_{12}{ }^{(1)}$ such that $<\mathrm{A}_{0} \mathrm{R}_{12}{ }^{(1)} \mathrm{B}_{0}=$ $<L_{1} R_{12}{ }^{(1)} L_{2}$

Direction of the angles are important.

4. Select $A_{1}$ anywhere on $L_{1}$ and select $B_{1}$ anywhere on $L_{2}$

Relative motion is the motion of AOB1 relative to $A_{0} A_{1}$. If $A_{0} A_{1}$ was fixed, $R^{1}{ }_{12}$ is the pole $P_{12}$. «fixed link $\left(A_{0} A_{1}\right)$ and the Coupler $\left(B_{0} B_{1}\right)$ subtend equal angles at the pole and this angle is half the rotation angle»

## Result Must always be checked!!!!!!

The method only tells you the mechanism exists for two positions. Motion in between the positions must be checked.

## Method 2



1. Select $B_{1}$ anywhere you like ( if $A_{0} B_{0}$ is not given, you can arbitrarily select $A_{0} B_{0}$ ). Determine $B_{2}$ so that $<B_{2} B_{0} B_{1}=\psi_{12}$ is satisfied.).
2. Fix $\mathrm{A}_{0} \mathrm{~B}_{0}$ and $\mathrm{B}_{0} \mathrm{~B}_{2}$ to each other and rotate about $\mathrm{A}_{0}$ by an angle $-\phi_{12}$. We have «subtracted» the motion of $A_{0} A$ from the motion of $B_{0} B$. The motion from $B_{0} B_{1}$ to $B_{0} B^{\prime}{ }_{2}$ is the motion of the plane $B_{0} B$ relative $\mathrm{A}_{0} \mathrm{~A}$.


## Kinematic Inversion



3. One can select $\mathrm{A}_{1}$ anywhere on the perpendicular bisector to $\mathrm{B}_{1} \mathrm{~B}_{2}$. One possible solution is as shown. There is no guarantee for the motion in between the positions. For example, the above solution, although movable in between the two specifed positions will not be a good choice in an application (why?)

Example: When the input crank rotates by $\phi_{12}=160^{\circ}(\mathrm{CCW})$, we want the output link to rotate by $\psi_{12}=60^{\circ}$ (CCW).

1. Select $A_{0} B_{0}$ and $A_{1}$, determine $A_{2}$ such that $<\mathrm{A}_{1} \mathrm{~A}_{0} \mathrm{~A}_{2}=\phi_{12}=160^{\circ}$.
2. If we fix the output link $B O B$ and look at the motion of $A 0 A$, in order to keep the relative positions the same, rotate $B_{0} A_{0} A_{2}$ about $B_{0}$ by $-60^{\circ}$ $\left(=-\psi_{12}\right)$. Relative motion of $A_{0} A$ with respect to $B_{0} B_{1}$ is the motion of $A_{0} A$ from $A_{0} A_{1}$ to $A_{0}^{\prime} A^{\prime}{ }_{2}$.
3. Draw the perpendicular bisector to $A_{1} A^{\prime}{ }_{2}, a_{12} \cdot B_{1}$ can be selected anywhere on the perpendicular bisector a12.
4. if $B_{0} B_{1}$ is selected such that it is perpendicular to $a_{12}$ in the resulting mechanism will have $90^{\circ}$ transmission angle in between the two positions and transmission angle will deviate less when moving in between the two positions.


## Result:



## Getgebra

Design a four-bar mechanism such that when the input link rotates by $150^{\circ} \mathrm{CW}$, output link will rotate by $60^{\circ} \mathrm{CW}$.

## Lever: (Archimedes (200 BC)



## Correlation of slider displacement with crank angle



Given: the crank rotation and slider displacent for two positions: $\phi_{12}$ and $s_{12}$ Determine: a slider crank mechanism to realize this motion.

## Method 1

Use linear displacement of the slide instead of angular displacement of the crank


## Method 2

1. Select $A_{0} A_{1}$ anywhere you like. Determine $A_{2}$ such that $<A_{1} A_{0} A_{2}=\phi_{12}$. $A$
2. Keep the crank fixed in first position. In order to have the same relative motion, move $\mathrm{A}_{0} \mathrm{~A}_{2}$ by a distance $-s_{12}$. This will bring $A_{0} A$ to $A_{0}^{\prime} A^{\prime}{ }_{2}$. motion from $A_{0} A_{1}$ to $A_{0}^{\prime} A^{\prime}{ }_{2}$ is the relative motion of plane $A_{0} A$ w.r. to slider in the first position.
3. Select $\mathrm{B}_{1}$ anywhere on the perpendicular bisector to $\mathrm{A}_{1} \mathrm{~A}_{2}^{\prime}\left(\mathrm{a}^{\prime}{ }_{12}\right)$.

Where will you select $B_{1}$ in order to have a good transmission angle?

SonThe resulting mechanism must be checked!!!.


## Design of Six Link Mechanisms

The fixed pivots must be within the rectangular area shown in red dashed line!!


Select the dyad $A_{0} A B$

This is a 3 dof open chain!


## Relative Motion of the lamp with respect to $\mathrm{A}_{0} \mathrm{~A}$

Select a point $B_{1}$ on the lamp. Determine $\mathrm{B}_{2}$. "SUBTRACT" the motion of the crank AOA from the motion of the lamp (rotate the lamp about $A_{0}$ by an angle $<A_{2} A_{0} A_{1}$.). This will bring $B$ to $B^{\prime}{ }_{2}$. Select the revolute joint axis $A_{1}$ anywhere on the perpendicular bisector to $B_{1} B^{\prime}{ }_{2}$.

If $A_{0} A$ were fixed, ( $A B C D$ ) will be a four-bar mechanism.

## The system now has 2 dof!



Next let us look at the motion of links AB or DC relative to the fixed plane.

Select a point E on link AB (or $D C)$. Determine the homologous ( $\mathrm{E}_{1}$ and $\mathrm{E}_{2}$ ).

Select $\mathrm{E}_{0}$ anywhere on the perpendicular bisector to $\mathrm{E}_{1} \mathrm{E}_{2}$ ( $\mathrm{e}_{12}$ ).

Now you can satisfy the condition «fixed pivots must be within the rectangular area shown»

## Result must be checked!!.




